MSC (FINANCIAL AND COMPUTATIONAL MATHEMATICS)

Overview

NFQ Level 9, Major Award

The MSc (Financial and Computational Mathematics) is a taught programme that may be taken full-time over 12 months from the date of first registration for the programme.

The Master's Degree consists of 90 credits consisting of taught modules for a total of 60 credits and a dissertation for a total of 30 credits.

Postgraduate Diploma in Financial and Computational Mathematics

Regulations regarding progression from Part I to Part II can be found in Marks and Standards (https://ucc-ie-public.courseleaf.com/general/ marksandstandards/). Students who pass Part I but do not meet this requirement, or who choose not to progress to Part II, will exit the programme with the Postgraduate Diploma in Financial and Computational Mathematics (https://ucc-ie-public.courseleaf.com/ programmes/pdfcm/).

Programme Requirements

For information about modules, module choice, options and credit weightings, please go to Programme Requirements (p. 1).

Programme Requirements

Dissertation

Students take 90 credits as follows:

Code	Title	Credits	
Part I			
Students take 60 credits) and 15 cr	credits as follows – all listed core modules (45 edits of elective modules:		
Core Modules			
MF6010	Probability Theory in Finance	10	
MF6011	Derivatives, Securities, and Option Pricing	5	
MF6012	Computational Finance I	5	
MF6013	Computational Finance II	5	
MF6014	Topics in Financial Mathematics	5	
MF6015	Continuous Time Financial Models	5	
AM6004	Numerical Methods and Applications	5	
CS6322	Optimisation	5	
Elective Modules ¹			
Students take mo	dules to the value of 15 credits from the followin	ng: 15	
AM6007	Scientific Computing with Numerical Examples (10)		
AM6019	Partial Differential Equations (5)		
ST4400	Data Analysis II (5)		
ST6040	Machine Learning and Statistical Analytics I (5)		
ST6041	Machine Learning and Statistical Analytics II (5)	
CS6503	Introduction to Relational Databases (5)		
Part II			

Total Credits		90
MF6016	Dissertation in Financial and Computational Mathematics	30
Core Modules		

Module selection must be approved by the module co-ordinator.

Programme Learning Outcomes

Programme Learning Outcomes for MSc (Financial and Computational Mathematics) (NFQ Level 9, Major Award)

On successful completion of this programme, students should be able to:

- Demonstrate technical competence in the computational aspects of financial mathematics;
- Explain the theoretical basis of mathematical models and techniques used in financial applications;
- Outline how this mathematical framework is influenced by the structure of financial markets
- Identify the limitations of mathematical and statistical models applied to real-world scenariosa;
- Apply appropriate programming languages and software packages to the analysis of problems and mathematical models arising in financial applications;
- Conduct and complete a substantial mathematical research project, and defend their findings in front of one or more domain experts.